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Abstract—Modern cloud-based applications (e.g., Facebook,
Dropbox) serve a wide range of edge clients (e.g., laptops,
smartphones). The clients’ characteristics vary significantly in
terms of hardware, operating systems, network connections, and
software versions, just to name a few. Unfortunately, due to
misconfiguration, outdated software, faulty hardware, or other
reasons, many edge systems operate at suboptimal performance.
Identifying poor performance and root causes is extremely
challenging for the client of the cloud system. In this paper,
we propose a novel troubleshooting service that leverages such
heterogeneity to identify and debug performance problems on
edge devices. First, by looking at many runs across many different
clients, the service groups clients into different clusters based
on performance. Next, the service enables logging on remote
clients to collect run time traces, and subsequently identifies the
root cause by analyzing logs automatically. We leverage high
level features such as machine/OS type along with more low
level kernel level statistics such as I/O rate and system calls.
To demonstrate our system, we first introduce a configuration
bug that was artificially injected in a recently built cluster by
changing the TCP buffer size. Next, we present two real-life case
studies, one related to I/O inefficiency on Android platform, and
another misconfiguration bug in VirtualBox, that were identified
using our tool.

Keywords-automated debugging; system calls; middleware;
cloud service; distributed computing;

I. INTRODUCTION

Modern data centers serve millions of users each day. To

access their services, edge clients use different computing

platforms which vary significantly in terms of hardware (e.g.,

high end desktop vs. resource constrained smart phones),

operating systems (e.g., Linux, Android, Mac OS, Windows),

network characteristics (e.g., wireless vs. wired, 3G vs. 2G),

and software versions (e.g., Firefox 12 vs. Firefox 13). For

instance, some may use a laptop over a wired Ethernet

connection to download a file whereas someone else may use

a smart phone over a 2G wireless network to get the same

file. Edge clients may experience suboptimal performance

due to outdated software, misconfigurations, inferior quality

hardware, poor quality network connections, among other

reasons. Although some causes are beyond a user’s control

(e.g., poor quality Wi-Fi), many are fixable once identified

(e.g., misconfiguration, outdated software). Since the client

has no way of comparing his/her system’s performance against

others, it is almost impossible for the client to ascertain subop-

timal performance to begin with. Even if they are dissatisfied

with the quality of service, it is often beyond their capacity

to identify the cause of “poor” performance. As a result,

consumers often end up blaming the service providers for

poor service, which is extremely damaging for the service

providers reputation and business. Moreover, data centers end-

up consuming more resources to serve requests due to edge

clients’ limitations.

In this paper, we identify several reasons that often lead to

suboptimal performance on edge client devices. First, software

developers often make certain assumptions regarding the target

execution environment, which affects the design of the soft-

ware. For example, the maximum expected network bandwidth

may limit the size of the buffer the developer allocates at the

network stack. However, once the target execution platform

changes (2G is upgraded to 3G), the software may not be

revisited to adapt to the changed condition, leading to subop-

timal performance or faulty execution. Unfortunately, subop-

timal performance caused by such outdated configurations is

extremely hard to detect. Second, users often continue to use

default configuration settings, which may not be the optimum

setting for the user. Finally, users often use outdated software

that may have inefficient implementations.

Fortunately, the cloud service provider is in a unique position

to leverage a huge volume of diverse groups of clients and

heterogeneity to identify and debug performance problems

experienced on edge devices. In this paper, we present a novel

troubleshooting framework that collects traces of software

executions and system parameters from many different edge

clients as needed, and attempt to answer questions like “Why

does a download on client X takes longer than average?”

or “Why is client Y’s download operation getting terminated

repeatedly?”. To aid the edge clients, in this paper, we present

the design and implementation of a middleware service that

leverages kernel level traces of system calls to identify sub-

optimal performance and perform root cause analysis.

The main idea behind our work is as follows. First, the

anomaly detection engine is executed as a background service,

which is responsible for monitoring high-level performance

metrics such as download delay and throughput. Based on

their performance, clients are grouped into different clusters

where clients having similar performance are put in the same

cluster. Next, once a cluster with suboptimal performance is
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identified, the more heavyweight logging functionalities (e.g.,

strace) are enabled automatically on edge devices to collect

system logs from clients that belong to different clusters.

Finally, an automated troubleshooting module analyzes the

collected logs from different performance clusters to identify

the root cause (e.g., Why does a node in computing cluster X

have high delay?). In this paper, the troubleshooting is offered

as a proactive service. The presented middleware monitors

software execution to identify potential anomalous conditions,

and troubleshoot once such conditions are observed. Moreover,

the same service can be used to identify faulty machines in

data centers which may be responsible for the suboptimal

performance on edge systems.

In this paper, we leverage kernel level tracing to provide

debugging as a service for the following reasons. First, while

different user applications perform different tasks (e.g., email

client, web browser, parallel processing) and may share lit-

tle in terms of design and implementation languages, they

often run on the same (or similar) operating system, which

often provides the necessary abstractions (e.g., system calls)

for the application layers. Additionally, irrespective of the

application, certain bugs often exhibit similar symptoms at

higher levels. For example, a slow download may be caused

by low bandwidth or inefficient I/O. However, without kernel

level traces, it may become extremely hard to identify the

real cause. Hence, characteristics of the system calls made

by an application are used as a side channel to understand

the behavior of the software. Second, as we leverage kernel

level traces, using our tool does not require access to the

application source code. Finally, it enables reuse of the service

to troubleshoot different applications without implementing

new tools for different applications.

To demonstrate the use of our tool, we first introduced a

configuration bug in a recently built cluster by changing

the TCP buffer space, causing one of the machines to take

longer to download files. By collecting kernel level traces,

we successfully identified the bug. Next, we troubleshoot a

real life I/O inefficiency problem relating to network transfers

on the Android platform. In short, file transfers were taking

longer on Android phones compared to laptops when under

similar network conditions. We identified the bottleneck to

be the inefficient file system on Android devices. Finally, we

present a misconfiguration bug in VirtualBox that repeatedly

caused a download operation from the Google source code

repository to be terminated after running for a while. The

user spent numerous hours trying to diagnose the problem

and wasted a few days on failed attempts. After the fact, we

applied our tool and it successfully identified the problem to

be a configuration issue in VirtualBox, which demonstrated

the utility of our tool.

The rest of the paper is organized as follows. Section II

describes related work. Section III describes the design and

implementation of our system. Section IV presents the eval-

uation of our tool. Section V describes the limitations of our

work and the future directions. Finally, Section VI concludes

the paper.

II. RELATED WORK

With ubiquitous adoption and scale, the economic and social

losses incurred due to software bugs are on the rise. Not

surprisingly, software debugging and troubleshooting have re-

ceived significant attention recently. To summarize, prior work

looked into source code verification [1], [2], [3], [4], statistical

debugging [5], [6], [7], hardware failure analysis [8], resource

bottleneck identification [9], run time analysis [10], [11],

performance bug troubleshooting [12], and misconfiguration

troubleshooting [13], [14], to name a few.

Recent work on cloud reliability and performance analysis in-

cludes efforts on benchmarking cloud services [15], hardware

failure characteristics analysis [8], and fault tolerant protocol

design [16]. Providing software testing as a service [17]

has also been recently proposed, which aims to leverage

computing infrastructure of the cloud to perform software

testing in a more scalable fashion. In a not-so-recent prior

work, to identify the components that are correlated to failure,

Pinpoint [3] attempts tracing client requests across execution

stages. Message level tracing is also being investigated [9] to

identify high delay causal paths in multi-tier web applications,

and to identify error propagation paths [7] at component

levels. A tree augmented Bayesian network (TAN) is used to

identify performance problems correlated to system states [5].

In another work [18], samples of healthy machines are used

to identify the sick machines. Another group of recent work

focuses on identifying interactive complexity across software

components or multiple computing systems [6], [12]. However,

none of these prior work attempts to identify suboptimal

performance on edge clients by proactively leveraging service

provider’s infrastructure.

Numerous run-time monitoring techniques have been proposed

to ensure quality-of-service at run-time [10], [11]. However,

the correct/expected behavior must be supplied as input to use

this approach. Such conditions may include pre-conditions or

post-conditions of function calls, expected values of variables,

temporal conditions or race conditions, which are often not

known even to the developer of the system.

Source code verification via leveraging state exploration is an-

other popular approach. Many automated debugging solutions

use state exploration [1], [2], [3], [4], [19] as an underly-

ing method to identify potential bugs. Delta debugging [4]

is one of the most influential works on statistical source

code debugging. Execution exploration works by simulating

software executions to find error situations. Variable values

are altered to narrow the aspects of the execution that leads

to the error. This is done systematically to find as many

bugs and their causes as possible. By this method, state

exploration approaches are able to provide the user with

bugs, the states in which they occur, and the values that lead

to the issue. Another method to pinpoint a software flaw

in the source code is via code annotation [20]. By adding

annotation at the time of development, execution paths can

be traced in the source code and thus the offending code

locations can be narrowed. In the FATE and DESTINI [1]
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approach, explicitly written expectations are used to find error

conditions. Like annotations, the programmer creates extra

code that explains how the code should behave in particular

scenarios. They can note what variable values should be, how

resources should be used, time of execution, as well as other

aspects of code behavior. The software can then know when

something is wrong because these assertions about behavior

would be broken. However, proper documentation of behavior

is needed for the method to be effective. There needs to be a

balance between over-constraining and under-constraining the

“expected” behavior so as not to have many false positives or

bugs slip through the cracks. Moreover, with this approach,

the tool needs to have access to the source code and requires

significant manual effort. Use of such a tool is not suitable to

troubleshoot poor performance caused by misconfiguration or

use of outdated software, which is one of the targets in our

work. Our method avoids this by simply not having behavior

expectations. Instead, we look at the performance of a wide

range of clients to determine the “best” possible performance

for a group of users. We can then use this information to

identify “troubled” edge clients.

In summary, although much prior work exist that focuses

on troubleshooting performance problems on the service

provider’s side, to the best of our knowledge, none of the

approaches attempt to leverage the service provider’s infras-

tructure to troubleshoot edge systems proactively.

III. OVERVIEW

Conceptually, our tool is divided into three components,

namely, a client-server communication component, a feature

extraction component, and a troubleshooting component. The

overall system architecture is illustrated in Figure 1. We

elaborate on each of these components below.

Log Collection Engine – 
Server Component 

Anomaly Detection  
Engine 

Troubleshooting Engine 

Troubleshooting  
Framework Inside Cloud 

Edge Clients 

Network  
Connections 

Cloud 

Log Collection Engine –
Client Component 

Fig. 1: System Architecture

A. Client-Server Communication Component

The network performance monitor begins by tracking trans-

actions between the client and the server. These transactions

are usually some sort of file download from the server. As

such, the server can log some basic transaction information

such as the client’s operating system, the program used to

download the data, and the total download time. This high

level data is used by an anomaly detector to determine if

the current client takes longer than other clients. Based on

System 
Data 

Logger 

Raw Logs 

Log 
Sender 

Commands 
to be  

Logged 
Command 
Receiver 

 Internet 

Anomaly 
Detector 

Log 
Receiver 

Network 
Performance 

Monitor 

Feature  
Extraction 

Logs 

Parsed Logs 

Troubleshooting 
Engine Client 

Server 

Fig. 2: Client-Server Communication Architecture

performance, the clustering engine groups different devices in

different clusters dynamically. We cluster executions based on

simple metrics such as delay. If an anomaly is detected, the

remote log collection is initiated which works as follows.

Remote log collection requires the communication of logs

between many edge clients and a central repository hosted on

a service provider’s servers. To facilitate this data transfer, we

have developed a client/server communication software that

monitors and logs executions once instructed, and sends the

logs to the server for processing. This system is shown in

Figure 2.

In short, the client is told which commands to log. One

way to determine the program/command name on the client

side is by using standard Linux commands such as cat
/proc/[pid]/cmdline for all PIDs on the system. Since the

client knows the server’s URL or IP address, it can check

the command line attributes for a reference to the server. If

there is a match, the command name is marked for logging.

There may be other ways (e.g., manually) to specify command

or program name that needs to be logged. When the logger

sees that a program marked for logging is running, it traces the

program’s execution using strace. This data is saved locally.

Another monitor watches the directory in which these logs are

stored. When the execution finishes, the client sends the log

to the server over the Internet.

This client/server communication program efficiently gathers

and transfers logs over the Internet to be analyzed by the server

side classifier. All communications are done via TCP sockets

to ensure a reliable transfer of logs. The client constantly

listens for commands to come from the server that should be

logged and the server constantly listens for logs coming from

many different clients. Both the server and client applications

are implemented in Java for easy portability to different

machines and to take advantage of convient Java sockets.

B. Feature Extraction Component

After logs have been collected, they are fed to the feature

extraction component, which prepares the information for log

analysis. Once the server receives the log, the log parser

extracts usable information such as time spent in each system

call, the number of times each system call is invoked, the

wait time between consecutive system calls of the same type

(i.e. time between consecutive read() or write() calls), and the

argument of some of these system calls. Once parsed, the

extracted data is stored in a formatted file as a list of attributes.

442442442



……… 
…….. 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
………. 
…….. 
 

 

……… 
…….. 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
………. 
…….. 
 

 

……… 
…….. 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
………. 
…….. 
 

 

……… 
…….. 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
………. 
…….. 
 

 

……… 
…….. 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F3(arg1) 
………. 
…….. 
 

 

……… 
…….. 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F4(arg1) 
F1(arg1,arg2,arg3) 
F2(arg1,arg2) 
F5(arg1) 
………. 
…….. 
 

 

F1.frequency=?,F1.avgTime=?, 
F1.arg1=?,F1.arg2=?,F1.arg3=? 
F2.frequency=?,F2.avgTime=?, 

F2.arg1=?,F2.arg2=? 
AvgDelay_F1_F2, 

F1.frequency=?,F1.avgTime=?, 
F1.arg1=?,F1.arg2=?,F1.arg3=? 
F2.frequency=?,F2.avgTime=?, 

F2.arg1=?,F2.arg2=? 
AvgDelay_F1_F2, 

F1.frequency=?,F1.avgTime=?, 
F1.arg1=?,F1.arg2=?,F1.arg3=? 
F2.frequency=?,F2.avgTime=?, 

F2.arg1=?,F2.arg2=? 
AvgDelay_F1_F2, 

F1.frequency=?,F1.avgTime=?, 
F1.arg1=?,F1.arg2=?,F1.arg3=? 
F2.frequency=?,F2.avgTime=?, 

F2.arg1=?,F2.arg2=? 
AvgDelay_F1_F2, 

F1.frequency=?,F1.avgTime=?, 
F1.arg1=?,F1.arg2=?,F1.arg3=? 
F2.frequency=?,F2.avgTime=?, 

F2.arg1=?,F2.arg2=? 
AvgDelay_F1_F2, 

F1.frequency=?,F1.avgTime=?, 
F1.arg1=?,F1.arg2=?,F1.arg3=? 
F2.frequency=?,F2.avgTime=?, 

F2.arg1=?,F2.arg2=? 
AvgDelay_F1_F2, 

F1.frequency=?,F1.avgTime=?, F1.arg1=?,F1.arg2=?,F1.arg3=?,………, <label=good> 
F1.frequency=?,F1.avgTime=?, F1.arg1=?,F1.arg2=?,F1.arg3=?,………, <label=good> 
F1.frequency=?,F1.avgTime=?, F1.arg1=?,F1.arg2=?,F1.arg3=?,………, <label=good> 
F1.frequency=?,F1.avgTime=?, F1.arg1=?,F1.arg2=?,F1.arg3=?,………, <label=bad> 
F1.frequency=?,F1.avgTime=?, F1.arg1=?,F1.arg2=?,F1.arg3=?,………, <label=bad> 
F1.frequency=?,F1.avgTime=?, F1.arg1=?,F1.arg2=?,F1.arg3=?,………, <label=bad> 

 

Fig. 3: Feature Extraction

Next, a subset of the stored attributes are selected and used to

identify the root cause as follows.

Although various system call statistics (i.e., attributes) provide

invaluable insight into an execution and are key to determining

the cause of a problem, the parser generates hundreds of

summary statistics. For effective troubleshooting, an efficient

mechanism is needed to select a subset of attributes. However,

selecting a subset of attributes from logs collected using

the strace utility (or any other log collection tool) is quite

challenging for the following reasons.

First, logs from different machines may have system calls

with different names, but the same semantic meaning. This

sometimes happens even in the same operating system. In

Linux, both the poll() and select() system calls have the

same semantic meaning for our purposes, but would appear

differently in a log. To solve this problem, our tool lets a user

specify a configuration file that maps such system calls. This

mapping is reusable across multiple applications.

Second, some operating systems offer more functionality than

others. In these cases, systems may have system calls that

cannot be mapped to calls in another system because they

do not exist. In these cases, we calculate an intersection

of calls between all machines involved in an analysis. This

intersection takes into account the mappings, if any, provided

by the user. The algorithm is simple. One machine is chosen

as the base set and only calls from that base set that also

appear in all other considered machines’ system call lists are

included in the intersection list. Note, it is possible that this

intersection method can miss system calls that are important to

one machine’s inefficiency compared to another. To help curb

this problem, statistics for system calls that are not included

in the intersection are summarized as well and reported to

the user along with the rules generated by our classification

algorithm. Therefore, a user will see if any of the system calls,

which are not in the intersection, are significant to the overall

executions and thus could be related to the problem. For each

system call not included, we calculate the same statistics as

for calls that are included.

Once the intersection is found, we calculate four attributes

for each call. The number of times a particular system call

is executed and the total amount of time spent executing

that call are both saved. The number of consecutive calls to

each system call (i.e. number of write() calls when a write()

is called immediately after) and the average time between

these consecutive calls are also added. Additionally, users may

specify a predefined configuration file to describe a list of

system call arguments (if any) that need to be included as

attributes. For instance, in this paper, we consider the return

values of read() and write() system calls. Finally, each log file

is represented by a row of statistics in the database file. The

overall process is illustrated in Figure 3. We start with a set

of raw good and bad strace logs. This is represented at the top

of Figure 3. Those files are then processed and statistics (i.e.,

frequency of each system call, time spent in each system call)

are calculated for each file. Finally, statistics from different

log files are saved in a formatted log file where each line

represents the summary of a single log file. A good or bad

label is added to identify whether the line is a summary of a

good or bad log.

C. Troubleshooting Component

We explore simple decision tree algorithms to generate rules

that may shed light on underlying anomalous behavior [21].

Once detailed logs have been gathered, parsed, and labeled as

good or bad, our classification algorithm attempts to build a

set of rules that may explain the root cause. These rules tell the

user which (combination of) attributes are different between

good and bad executions and thus can help a user identify the

problem.

Algorithm 1 Classification Algorithm

Input: Log summaries labeled as good or bad

CommonAttributeSet

Output: Top 10 classification rules

ClassAttributeSet← {Good,Bad}
for i = 1→ 10 do

DecisionTree← generateTree(CommonAttributeSet,
ClassAttributeSet)

RootAttribute← DecisionTree.root()
if RootAttribute = NULL then

break
else

printRule(DecisionTree)
CommonAttributeSet.remove(RootAttribute)

end if
end for

The main idea behind the algorithm is as follows. Each row in

the input dataset represents one execution log, and consists of

a class attribute (i.e., representing either “good” or “bad” in

our case) and a set of numerical and/or categorical attributes.

Please note that the set of attributes that are fed to the
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           y > 100 

x > 50 

Good = Yes Good = No 

Good = Yes 

Yes No 

Yes No 

Fig. 4: Sample Decision Tree

algorithm are common across all the logs as explained earlier.

The goal of the algorithm is to build a decision tree that can be

used to predict the class attribute based on the other attributes.

The decision tree implementation used in this paper, first,

calculates the information gain of each attribute. Basically, the

information gain of a given attribute ’X’ is equal to the entropy,

or randomness, of the raw training set minus the entropy of

the training set given ’X’ as a classification attribute. In other

words, information gain is based on how well the attribute is at

predicting the class. For details on information gain, interested

readers are referred to prior work [21]. The algorithm choses

the attribute with the highest information gain at each stage

of the tree construction. Next, the tree builder splits the data

into two sets using the chosen attribute. The new sets of data

are then recursively split following the same process as above

as long as the new split improves the prediction accuracy.

Once a tree is created, each leaf node will represent instances

of a particular class (e.g., good or bad). Each root-to-leaf

path represents a rule that can be used to predict the class

of the training instances that belongs to that particular leaf.

Each node on a root-to-leaf path represents a condition that

describes how it splits the data at that node. To get a rule, these

node descriptions are combined with AND for a specific root-

to-leaf path. Paths that end with leaf nodes labeled with the

same class are then combined using OR. Figure 4 shows a

sample decision tree. The rule generated for this tree would

be, if (x < 50) or (if x > 50 and y > 100) then the execution
is good. These rules are returned to the user so that they may

identify the root cause behind the anomalous behavior.

Note, it is possible for the algorithm to pick an attribute in the

first iteration that may not be the cause, but just happens to

be the one with the highest information gain. Hence, once we

build a tree, we then remove the root attribute, and attempt

to rebuild the tree from scratch. However, after the removal

of many attributes after multiple interations, possibility of

generating junk rules may increase (e.g., due to over-fitting).

Hence, we repeat the process a predefined number of times

(e.g., 10 times in our case). In our current implementation,

we report the top 10 rules to the user. In our experiments,

we found this number to be large enough to gain enough

information about differences between executions to guide

us in the right direction to find the bugs. This value can be

changed as needed for individual cases.

We implemented this system in Java as with all the other

components of our tool. The decision tree construction is based

on the jaDTi open souce decision tree implementation.

IV. EVALUATION

To illustrate the wide applicability of our tool, we applied it in

three different settings. In each case, the cause of the problem

was different. In the first case, we introduced a configuration

bug into a recently built cluster by changing the TCP buffer

space, causing two of the six machines taking longer to

download files. In the second case, the reported problem was

a slow download speed on smart phones compared to laptops

when they are under similar network conditions. In the third

case, the problem is a configuration issue on VirtualBox. Our

tool successfully identified the problem in all three cases. We

elaborate each example below.

A. Case Study - I: TCP Memory Misconfiguration

Sometimes errors and misconfigurations during installation of

software can cause performance issues down the line. These

types of bugs, though very frustrating, are hard to locate. To

test our tool, we created a scenario where a cluster of six

server machines was set up, but two of the machines ended

up with (for this experiment, intentionally) misconfigured TCP

memory minimum, maximum, and threshold values, resulting

in degraded network performance.

In our experiment, four of the machines were left with the de-

fault TCP memory values of 765792, 1021056, and 1531584.

Two of the machines were set to have the values of 77, 102,

and 153. We chose those incorrect values to be 10−4 of the

appropriate values to simulate a programming error that used

an incorrect multiplier in the setup of these machines.

We ran wget to fetch random 200MB sized files from a

common server in the network and logged the statistics. Five

different files of the same size were generated and each of

those files was downloaded 25 times on each machine.

The logs were fed to our tool. Recall that the tool performs

some pre-calculations based on the system call traces. For

each trace, it calculates the number of times all the calls in

the list are executed along with the sum of the time it took

each call to execute across the entire trace. It then calculates

the time between consecutive calls and averages these values

for each combination of calls. For example, if a write() call

immediately followed a write(), the difference in time from

the start of the more recent write() and the end of the first

write() was calculated and added to the running sum of total

write() to write() times which was then used to calculate the

average. For each system call, the result value was logged

and averaged across an execution. This is important for some

calls, like read()s, which return the amount of data read. For

read() and write() calls, the tool also averages the value of one

of the call’s parameters, specifically the maximum amount of

data that could be read or written by the call.

Figure 5 shows the download times for each experiment, color

coded based on which machine the file was downloaded to.

In this graph, a clear clustering can be seen between the two

sets of machines.

Running the troubleshooting algorithm, including parsing and

attribute selection, took approximately 130 sec. A Total of

958 attributes were fed to the classification algorithm. The
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Fig. 5: Wget Run Times of Each Experiment on the Cluster

Machines

Plot Rule

6(a) If numread < 23631.5 then good = yes
6(b) If numwrite < 47116.5 then good = yes
6(c) If timeselect < 2.125 then good = yes
6(d) If resultread < 10823.0 then good = no
6(e) If resultwrite < 5367.0 then good = no
6(f) If numselect < 23624.5 then good = yes

TABLE I: Top 6 Rules for TCP Memory Bug

rules in Table I point out three system calls as key to the

differences between the good executions and bad executions

(the abbreviations used in the table are explained in Table II).

We show six of the ten rules for the sake of space in Table I.

Each of the rule in Table I has classification accuracy of

100% (i.e., each rule individually can classify all the training

instances correctly). Four of the top rules all point to reading

data from the socket and indicate that, in bad machines, a

significant amount of extra time was spent on reading. The

fourth rule in the table clearly shows that the average amount

of data read into the buffer is always lower on the bad

machines. Figure 6(d) highlights this difference. Figure 6 show

the vast difference between these values in the execution logs.

Since the issue was network related and our rules suggested

that bad machines were able to read fewer amount of data each

time and needed more read() calls to read the same amount

of data as the good machines, it is not a jump to assume

a system administrator would look into available memory to

network applications. This would lead him to the tcp mem file

Fig. 6: Comparison of Key Rule Attribute Values in Good and

Bad Machines

which sets the amount of memory available to TCP, which is

where the bugs are.

Attribute Interpretation

numread Number of read calls
numwrite Number of write calls
numselect Number of select calls
timeread Time in read calls
timewrite Time in write calls
timeselect Time in select calls
resultread Data size read
resultwrite Data size written
paramread Max possible read size

TABLE II: Attribute to Interpretation Mappings for Case

Studies I & II

B. Case Study - II: Android Network Delay

While studying the network performance of smart phones,

a research group at the University of Connecticut (UConn)

observed that smartphones had slower network speeds than

other machine types (e.g., laptops, desktops) even when they

are under similar network conditions (in the same wireless

network, using the same network protocols, downloading data

from the same server, and using the same TCP parameters).

We were approached to further study the problem and attempt

to identify a cause or causes for the delay. Interestingly, the

situation is of importance to cloud service providers, where

some clients (e.g., laptops) may have better performance than

some other clients (e.g., smartphone users).

To reproduce the delay as identified by the prior research

group, a simple set of tests were ran. The devices used for

this case study include a Toshiba Portege R705-P35 Laptop

with a dual core Intel i3 processor, 4GB of RAM, running

CrunchBang Linux version 10, and a Samsung Nexus S smart-

phone with a single core Samsung Exynos 3110 processor,

4GB of RAM, running Android 4.0.4. Random files of sizes

1MB, 5MB, 10MB, 20MB, and 30MB were downloaded 10

times to the Android smartphone and Linux laptop using wget

version 11. Figure 7 shows the average runtime of wget for

each file over 10 trials on both a controlled and an uncontrolled

network. In the controlled network, the server machine was

connected directly to a wireless router and only one client

machine was attached to the router during the experiment. In

the uncontrolled experiment, the devices were using UConn’s

Wi-Fi network.

Plots Rule

8(a) If numread < 5304.0 then good = no
8(b) If resultread < 2120.0 then good = yes
8(c) If timewrite < 0.366 then good = yes
8(d) If paramread < 14180.0 then good = no
8(e) If numwrite < 5328.0 then good = no
8(f) If resultwrite < 2116.0 then good = yes

TABLE III: Top 6 Rules for Android Bug

As can be seen in Figure 7, in both controlled and uncontrolled

experiments, for the tested file sizes, the laptop outperformed

the phone. The difference also increases as the file size in-

creases. For troubleshooting, we downloaded a 10MB random
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Fig. 7: Wget Run Times for Android and Linux Machines

Fig. 8: Comparison of Key Attribute Values in Android and

Laptop

file via wget 50 times on both the phone and laptop in the

controlled setting as before and logged statistics on both

devices. The logs were processed by our tool and the rules

shown in Table III were generated (the abbreviations used

in the table are explained in Table II). Each of the rule in

Table III has classification accuracy of 100% (i.e., each rule

individually can classify all the training instances correctly).

Again, only six of ten are shown here for space concerns.

Running the troubleshooting algorithm, including parsing and

attribute selection, took approximately 3 sec. A total of 508

attributes were fed to the classification algorithm. In this case,

a “good” execution is one that comes from a laptop, thus these

rules differentiate between Android and laptop. All of the rules

generated deal with read()s and write()s, except for two which

identify open() and close().

Interestingly, as can be seen in Figure 8, the average number

of write calls is significantly higher in laptop runs. However,

write calls were much faster on the laptop. Hence, Android

ends up wasting a significant amount of time in writing data.

Over the course of a run, the I/O delay between consecutive

write calls adds up for the Android and was the prime

contributing factor of the delay. It is important to note that the

laptop would read, and thus write less data per call, but do it

all at a much faster rate than that on the phone. This led us to

the conclusion that a file system issue was the primary cause

of the slowdown, rather than networking issues which was the

initial guess. This example highlights the importance of our

tool, which can guide the developer in the right direction. Days

of effort were wasted in tweaking network parameters to fix the

problem, whereas the problem was something else. Currently,

we are working to identify the root cause behind the “slow”

I/O rate on Android. It is important to note that the cause

of this “slow” I/O can be related to slow hardware and/or an

inefficient file system software implmentation as well as other

software issues.

C. Case Study - III: VirtualBox Misconfiguration Identifica-
tion

Part of the process for the Android experiment required down-

loading the Android source code from the Google repositories.

To do this, on machines running Windows, Ubuntu 11.10 was

installed on top of VirtualBox 4.1.8 so that the convenient

Linux binaries for git and repo could be used. When the

download of the source was started (using the “repo sync”

command) with all default parameters used in VirtualBox,

it would run for a while, then fail, returning a fetch error.

Numerous failed attempts were made.

Unlike the previous test cases, this case did not initially seem

to be caused by some sort of low level misconfiguration or

inefficiency. After all, the download was starting smoothly and

was continuing for a while before being terminated. Initial

guesses included the possibility of network limit on campus

network, which resulted in few email exchanges. However,

this proved not to be the case. Interestingly, downloads of the

source were successfully completed on machines natively run-

ning Ubuntu relatives (CrunchBang). Further research showed

that others were able to download the code in VirtualBox.

The guess was that the error was being caused by a problem

in VirtualBox, maybe with some configuration that, combined

with the University’s network, caused the connection to die

and thus resulted in the fetch errors. Eventually, the root cause

turned out to be a simple one. When the NAT adapter type

was used for the network connection, the download failed, but

when the bridged connection was used, it succeeded. Fixing

this misconfiguration on the machines that previously had

fetch errors allowed the download to complete.

Looking back, we collected three VirtualBox configuration

files, two where the download failed and one where it

completed. Even with this small set, our tool was able to

identify the network adapter as the first rule, and thus the

best indicator as to whether a download will fail or not. The

rule generated was if adaptertype = bridged then good =
yes, directly identifying the configuration bug that has been

extremely hard to detect. This example demonstrates that if

users volunteer their configuration files whether they have a

problem or not, these files can be used to help identify bugs

related to misconfigurations using our tool easily.

V. LIMITATIONS AND FUTURE WORK

Stracing can be a very intensive procedure since it requires

constant monitoring of executions so as to catch the system

calls and regular hard disk accesses to log the calls. Because

of these invasive aspects of strace, we analyzed the execution

overhead of stracing a program, in this case wget on both the

laptop and Android phone.
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Fig. 9: Wget Execution Time Averages with and without Strace

Logging

Figure 9 shows the average execution times of wget fetches

for a 1MB, 5MB, 10MB, 20MB, and 30MB. For each data

point, the file was fetched 25 times. As the graph shows, strace

added very little overhead to the laptop executions. However,

as can be seen see in Figure 9, the overhead of stracing on the

Android platform was much more significant. For the 30MB

files, 1.6 seconds on average were added. The likely reason for

the higher overhead on the Android phone is related to the I/O

bottleneck identified as the cause of the network slowdown.

Fortunately, for a given edge client, stracing of a command

will only have to be done once and so even a moderately

large delay will be experienced only once by the user.

Another overhead issue is the communication of possibly very

large strace files from clients to the central server. For example,

some of the logs from sick machines in the cluster experiment

reached over 20MB. The transmission of files of this size from

many edge clients can become troublesome. To help curb this

problem, we are exploring the possibility of parsing the logs

on client machines. Doing so will increase system overhead

for the client, but would vastly reduce the amount of data to be

sent since the number of attributes that are generated is static.

For instance, for the cluster experiment, a file containing data

from a single parsed strace was only 2KB in size, a clear

improvement over 20MB.

Finally, since the logs are not needed immediately, our client

application could wait for an optimum time to transmit the

logs. This could be a time when network usage is low, possibly

late at night or early in the morning, thus limiting the effect

on the client’s user experience.

VI. CONCLUSION

In this paper, we present a tool that leverages service

providers’ infrastructure to troubleshoot edge computing sys-

tems. As we leverage kernel level utilities for troubleshooting,

the tool does not require access to application source code.

We evaluated our tool using one artificially injected bug and

presented two real-life case studies. We also show that the

overhead is tolerable and incurred only once for a particular

case. To the best of our knowledge, this is the first paper to

propose troubleshooting edge clients using heterogeneity to

identify and debug performance issues on edge devices. We

strongly believe that such a tool is mutually beneficial and of

great importance for both the service provider and the clients.
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